Dryland Agrivoltaics: A novel approach to collocating food production and solar renewable energy to maximize food production, water savings, and energy generation

Friday, December 15, 2017 - 08:00
Add to Calendar

Conventional understanding of land use asserts an inherent “zero-sum-game” of competition between renewable energy and agricultural food production. This discourse is so fundamentally entrenched that it drives most current policy around conservation practices, land and water allotments for agriculture, and permitting for large-scale renewable energy installations. We are investigating a novel approach to solve a problem key to our environment and economy in drylands by creating a hybrid of collocated “green” agriculture and “grey” solar photovoltaic (PV) infrastructure to maximize agricultural production while improving renewable energy production. We are monitoring atmospheric microclimatic conditions, soil moisture, plant ecophysiological function, and biomass production within both this novel “agrivoltaics” ecosystem and in traditional PV installations and agricultural settings (control plot) to quantify tradeoffs associated with this approach.

We have found that levels of soil moisture remained higher after each irrigation event within the soils under the agrivoltaics installation than the traditional agricultural setting due to the shading provided by the PV panels overhead. We initiated a drought treatment, which underscored the water-savings under the agrivoltaics installation and increased water use efficiency in this system. We hypothesized that we will see more temperature and drought stresses on photosynthetic capacity and water use efficiency in the control plants relative to the agrivoltaic installation, and we found that several food crops either experienced significantly more production within the agrivoltaics area, whereas others resulted in nearly equal production but at significant water savings. Combined with localized cooling of the PV panels resulting from the transpiration from the vegetative “understory”, we are finding a win-win-win at the food-water-energy nexus.

Link for More Information: 
Funding Program: