How Will Shrub Expansion Impact Soil Carbon Sequestration in Arctic Tundra?

Monday, December 14, 2015 - 11:00
Add to Calendar

Multiple lines of evidence suggest that plant productivity, and especially shrub abundance, is increasing in the Arctic in response to climate change. This greening is substantiated by increases in the Normalized Difference Vegetation Index, repeat photography and field observations. The implications of a greener Arctic on carbon sequestration by tundra ecosystems remain poorly understood. Here, we explore existing datasets of plant productivity and soil carbon stocks to quantify how greening, and in particular an expansion of woody shrubs, may translate to the sequestration of carbon in arctic soils.
As an estimate of carbon storage in arctic tundra soils, we used the Northern Circumpolar Soil Carbon Database v2. As estimates of tundra type and productivity, we used the Circumpolar Arctic Vegetation map as well as the MODIS and Landsat Vegetation Continuous Fields, and MODIS GPP/NPP (MOD17) products.

Preliminary findings suggest that in graminoid tundra and erect-shrub tundra higher shrub abundance is associated with greater soil carbon stocks. However, this relationship between shrub abundance and soil carbon is not apparent in prostrate-shrub tundra, or when comparing across graminoid tundra, erect-shrub tundra and prostrate-shrub tundra. Uncertainties originate from the extreme spatial (vertical and horizontal) heterogeneity of organic matter distribution in cryoturbated soils, the fact that (some) permafrost carbon stocks, e.g. yedoma, reflect previous rather than current vegetative cover, and small sample sizes, esp. in the High Arctic.

Using Vegetation Continuous Fields and MODIS GPP/NPP (MOD17), we develop quantitative trajectories of soil carbon storage as a function of shrub cover and plant productivity in the Arctic (>60°N). We then compare our greening-derived carbon sequestration estimates to projected losses of carbon from thawing permafrost.

Our findings will reduce uncertainties in the magnitude and timing of the carbon-climate feedback from the terrestrial Arctic, and thus provide guidance for future climate mitigation and adaptation strategies.