An iceberg model implementation in ACME

Tuesday, December 12, 2017 - 13:40
Add to Calendar

Icebergs represent approximately half of the mass flux from the Antarctic ice sheet, transporting freshwater and nutrients away from the coast to the Southern Ocean. Icebergs impact the surrounding ocean and sea ice environment, and serve as nutrient sources for biogeochemical activity, yet these processes are typically not resolved in current climate models. We have implemented a parameterization for iceberg drift and decay into the Department of Energy's Accelerated Climate Model for Energy (ACME), where the ocean, sea ice, and land ice components are based on the unstructured grid modeling framework Multiple Prediction Across Scales (MPAS), to improve the representation of Antarctic mass flux to the Southern Ocean and its impacts on ocean stratification and circulation, sea ice, and biogeochemical processes in a fully coupled global climate model. The iceberg model is implemented in two frameworks: Lagrangian and Eulerian. The Lagrangian framework embeds individual icebergs into the ocean and sea ice grids, and will be useful in modeling ‘giant’ (>10 nautical miles) iceberg events, which may have highly localized impacts on ocean and sea ice. The Eulerian framework allows us to model a realistic population of Antarctic icebergs without the computational expense of individual particle tracking to simulate the aggregate impact on the Southern Ocean climate system. This capability, together with under ice-shelf ocean cavities and dynamic ice-shelf fronts, will allow for extremely high fidelity simulation of the southern cryosphere within ACME.

Link for More Information: