Skip to main content
U.S. flag

An official website of the United States government

The Land Use Model Intercomparison Project (LUMIP) Contribution to CMIP6: Rationale and Experimental Design

Presentation Date
Tuesday, December 13, 2016 at 4:00pm
Moscone West - 3001



Human land-use activities have resulted in large changes to the Earth surface, with resulting implications for climate. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the impacts of land-use and land-cover change (LULCC) on climate, specifically addressing the questions: (1) What are the effects of LULCC on climate and biogeochemical cycling (past-future)? (2) What are the impacts of land management on surface fluxes of carbon, water, and energy and (3) Are there regional land-management strategies with promise to help mitigate against climate change? LUMIP will also address a range of more detailed science questions to get at process-level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than possible in a multi-model context to date. Foci will include separation and quantification of the effects on climate from LULCC relative to all forcings, separation of biogeochemical from biogeophysical effects of land-use, the unique impacts of land-cover change versus land management change, modulation of land-use impact on climate by land-atmosphere coupling strength, and the extent that CO2 fertilization is modulated by past and future land use. LUMIP involves three sets of activities: (1) development of an updated and expanded historical and future land-use dataset, (2) an experimental protocol for LUMIP experiments, and (3) definition of metrics that quantify model performance with respect to LULCC. LUMIP experiments are designed to be complementary to simulations requested in the CMIP6 DECK and historical simulations and other CMIP6 MIPs including ScenarioMIP, C4MIP, LS3MIP, and DAMIP. LUMIP includes idealized coupled and land-only model simulations designed to advance process-level understanding of LULCC impacts on climate. LUMIP also includes simulations that allow quantification of the historic impact of land use and the potential for future land management decisions to aid in mitigation of climate change. We will present the experimental protocol in detail, explain the rationale, outlines plans for analysis, and describe a new subgrid land-use tile data request for selected variables (reporting model output data separately for primary and secondary land, crops, pasture, and urban land-use types).

Funding Program Area(s)