Biological and Environmental Research - Earth and Environmental System Sciences
Earth and Environmental System Modeling

What Governs the Oxygen and Hydrogen Isotopic Composition of Precipitation? A case for varying proportions of isotopically

Wednesday, December 14, 2016 - 08:00
Add to Calendar

Beginning with the pioneering work of Dansgaard in 1953, stable water isotope ratios have been observed to be different in precipitation from different clouds, such as convective showers and continuous frontal rain, hydrologically more or less organized systems, or those with or without ‘bright bands’ in radar reflectivity. The variability in isotope ratios of precipitation has always been interpreted, however, using a Rayleigh distillation framework, with lower isotope ratios resulting from condensation at lower temperatures and/or greater air mass distillation, a lack of below-cloud evaporation or in-cloud re-cycling, etc. Rayleigh distillation based approaches do not account for the fact that tropical and midlatitude precipitation consists of varying proportions of two fundamental rain types – widespread but lower intensity, stratiform and spatially-limited but higher intensity, convective – which form under very different cloud dynamical and microphysical environments. Using rain type fraction and isotope data from a large set of monitoring stations, we will show that differences in cloud processes impart characteristic isotope signatures to the two rain types and that their changing proportions during storm events are primarily responsible for precipitation isotope variability. As a result, isotope ratios can be used to partition precipitation into convective or stratiform rain fractions, which is important for understanding cloud feedbacks and atmospheric circulation response to precipitation, as well as climate impacts on the water cycle. We will also discuss the changing character of tropical and midlatitude precipitation over the past several decades and its implications.

Link for More Information: 
Funding Program: