Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5

TitleContributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5
Publication TypeJournal Article
Year of Publication2013
JournalJournal of Climate
Abstract / Summary

Using five climate model simulations of the response to an abrupt quadrupling of CO2, we perform the first simultaneous model intercomparison of cloud feedbacks and rapid radiative adjustments with cloud masking effects removed, partitioned among changes in cloud types and gross cloud properties. Upon CO2 quadrupling, clouds exhibit a rapid reduction in fractional coverage, cloud top pressure, and optical depth, each contributing equally to a 1.1 W/m2 net cloud radiative adjustment, primarily from shortwave radiation. Rapid reductions in mid-level clouds and optically thick clouds are important in reducing planetary albedo in every model. As the planet warms, clouds become fewer, higher, and thicker, and global mean net cloud feedback is positive in all but one model and results primarily from increased trapping of longwave radiation. As was true for earlier models, high cloud changes are the largest contributor to inter-model spread in longwave and shortwave cloud feedbacks, but low cloud changes are the largest contributor to the mean and spread in net cloud feedback. The importance of the negative optical depth feedback relative to the amount feedback at high latitudes is even more marked than in earlier models.We show that the negative longwave cloud adjustment inferred in previous studies is primarily caused by a 1.3 W/m2 cloud masking of CO2 forcing. Properly accounting for cloud masking increases net cloud feedback by 0.3 W/m2/K, whereas accounting for rapid adjustments reduces by 0.14 W/m2/K the ensemble mean net cloud feedback through a combination of smaller positive cloud amount and altitude feedbacks and larger negative optical depth feedbacks.

URLhttp://www.atmos.washington.edu/ mzelinka/Zelinka_etal_revised.pdf
DOI10.1175/JCLI-D-12-00555.1
Journal: Journal of Climate
Year of Publication: 2013

Using five climate model simulations of the response to an abrupt quadrupling of CO2, we perform the first simultaneous model intercomparison of cloud feedbacks and rapid radiative adjustments with cloud masking effects removed, partitioned among changes in cloud types and gross cloud properties. Upon CO2 quadrupling, clouds exhibit a rapid reduction in fractional coverage, cloud top pressure, and optical depth, each contributing equally to a 1.1 W/m2 net cloud radiative adjustment, primarily from shortwave radiation. Rapid reductions in mid-level clouds and optically thick clouds are important in reducing planetary albedo in every model. As the planet warms, clouds become fewer, higher, and thicker, and global mean net cloud feedback is positive in all but one model and results primarily from increased trapping of longwave radiation. As was true for earlier models, high cloud changes are the largest contributor to inter-model spread in longwave and shortwave cloud feedbacks, but low cloud changes are the largest contributor to the mean and spread in net cloud feedback. The importance of the negative optical depth feedback relative to the amount feedback at high latitudes is even more marked than in earlier models.We show that the negative longwave cloud adjustment inferred in previous studies is primarily caused by a 1.3 W/m2 cloud masking of CO2 forcing. Properly accounting for cloud masking increases net cloud feedback by 0.3 W/m2/K, whereas accounting for rapid adjustments reduces by 0.14 W/m2/K the ensemble mean net cloud feedback through a combination of smaller positive cloud amount and altitude feedbacks and larger negative optical depth feedbacks.

DOI: 10.1175/JCLI-D-12-00555.1
Citation:
Zelinka, MD, SA Klein, KE Taylor, T Andrews, MJ Webb, JM Gregory, and PM Forster.  2013.  "Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5."  Journal of Climate.  https://doi.org/10.1175/JCLI-D-12-00555.1.