Skip to main content
U.S. flag

An official website of the United States government

Publication Date
1 September 2013

A Decomposition of Feedback Contributions to Polar Warming Amplification



Polar surface temperatures are expected to warm 2‑3 times faster than the global mean surface temperature; a phenomenon referred to as polar warming amplification.Therefore, understanding individual process contributions to the polar warming is critical to understanding global climate sensitivity.The coupled feedback response analysis method (CFRAM) is applied to decompose the annual and zonal mean, vertical temperature response within a transient 1% yr‑1 CO2 increase simulation of the NCAR CCSM4 into individual radiative and non‑radiative climate feedback process contributions. The total transient annual mean polar warming amplification (amplification factor) at the time of CO2 doubling is +2.12 K (2.3) and +0.94 K (1.6) in the northern and southern hemisphere, respectively. Surface albedo feedback is the largest contributor to the annual mean polar warming amplification accounting for +1.82 K and +1.04 K in the northern and southern hemisphere, respectively. Net cloud feedback is found to be the second largest contributor to polar warming amplification (about +0.38 K in both hemispheres) and is driven by the enhanced downward longwave radiation to the surface resulting from increases in low polar water cloud. The external forcing and atmospheric dynamic transport also contribute positively to polar warming amplification: +0.29 K and +0.32 K, respectively.Water vapor feedback contributes negatively to polar warming amplification because its induced surface warming is stronger in low latitudes. Ocean heat transport storage and surface turbulent flux feedbacks also contribute negatively to polar warming amplification.Ocean heat transport and storage termsplay an important role in reducing the warming over the Southern Ocean and Northern Atlantic Ocean.

“A Decomposition Of Feedback Contributions To Polar Warming Amplification”. 2013. Journal Of Climate, 7023-7043. doi:10.1175/JCLI-D-12-00696.1.
Funding Program Area(s)