Skip to main content
U.S. flag

An official website of the United States government

Publication Date
24 January 2022

Ice-shelf ocean boundary layer dynamics from large-eddy simulations



Small scale, turbulent flow below ice shelves is regionally isolated and difficult to measure and simulate. Yet these small scale processes, which regulate heat and salt transfer between the ocean and ice shelves, can affect sea-level rise by altering the ability of Antarctic ice shelves to “buttress” ice flux to the ocean. In this study, we improve our understanding of turbulence below ice shelves by means of large-eddy simulations at sub-meter resolution, capturing boundary layer mixing at scales intermediate between laboratory experiments or direct numerical simulations and regional or global ocean circulation models. Our simulations feature the development of an ice-shelf ocean boundary layer through dynamic ice melting in a regime with low thermal driving, low ice-shelf basal slope, and strong shear driven by the geostrophic flow. We present a preliminary assessment of existing ice-shelf basal melt parameterizations adopted in single component or coupled ice-sheet and ocean models on the basis of a small parameter study. While the parameterized linear relationship between ice-shelf melt rate and far-field ocean temperature appears to be robust, we point out a little-considered relationship between ice-shelf basal slope and melting worthy of further study.

Begeman, Carolyn Branecky, Xylar Asay-Davis, and Luke Van Roekel. 2022. “Ice-Shelf Ocean Boundary Layer Dynamics From Large-Eddy Simulations”. The Cryosphere 16: 277-295. doi:10.5194/tc-16-277-2022.
Funding Program Area(s)