Impact of the Desert Dust on the Summer Monsoon System over Southwestern North America

TitleImpact of the Desert Dust on the Summer Monsoon System over Southwestern North America
Publication TypeJournal Article
Year of Publication2012
JournalAtmospheric Chemistry and Physics
Number8
Pages3717-3731
Abstract / Summary

The radiative forcing of dust emitted from the Southwest United States deserts and its impact on monsoon circulation and precipitation over the North America monsoon (NAM) region are simulated using a coupled meteorology and aerosol/chemistry model (WRF-Chem) for 15 years (1995–2009). During the monsoon season, dust has a cooling effect (−0.90 W m−2) at the surface, a warming effect (0.40 W m−2) in the atmosphere, and a negative top-of-the-atmosphere (TOA) forcing (−0.50 W m−2) over the deserts on 24-h average. Most of the dust emitted from the deserts concentrates below 800 hPa and accumulates over the western slope of the Rocky Mountains and Mexican Plateau. The absorption of shortwave radiation by dust heats the lower atmosphere by up to 0.5 K day−1 over the western slope of the Mountains. Model sensitivity simulations with and without dust for 15 summers (June-July-August) show that dust heating of the lower atmosphere over the deserts strengthens the low-level southerly moisture fluxes on both sides of the Sierra Madre Occidental. It also results in an eastward migration of NAM-driven moisture convergence over the western slope of the Mountains. These monsoonal circulation changes lead to a statistically significant increase of precipitation by up to  40 % over the eastern slope of the Mountains (Arizona-New Mexico-Texas regions). This study highlights the interaction between dust and the NAM system and motivates further investigation of possible dust feedback on monsoon precipitation under climate change and the mega-drought conditions projected for the future.

URLhttp://www.atmos-chem-phys.net/12/3717/2012/acp-12-3717-2012.html
DOI10.5194/acp-12-3717-2012
Journal: Atmospheric Chemistry and Physics
Year of Publication: 2012
Number: 8
Pages: 3717-3731

The radiative forcing of dust emitted from the Southwest United States deserts and its impact on monsoon circulation and precipitation over the North America monsoon (NAM) region are simulated using a coupled meteorology and aerosol/chemistry model (WRF-Chem) for 15 years (1995–2009). During the monsoon season, dust has a cooling effect (−0.90 W m−2) at the surface, a warming effect (0.40 W m−2) in the atmosphere, and a negative top-of-the-atmosphere (TOA) forcing (−0.50 W m−2) over the deserts on 24-h average. Most of the dust emitted from the deserts concentrates below 800 hPa and accumulates over the western slope of the Rocky Mountains and Mexican Plateau. The absorption of shortwave radiation by dust heats the lower atmosphere by up to 0.5 K day−1 over the western slope of the Mountains. Model sensitivity simulations with and without dust for 15 summers (June-July-August) show that dust heating of the lower atmosphere over the deserts strengthens the low-level southerly moisture fluxes on both sides of the Sierra Madre Occidental. It also results in an eastward migration of NAM-driven moisture convergence over the western slope of the Mountains. These monsoonal circulation changes lead to a statistically significant increase of precipitation by up to  40 % over the eastern slope of the Mountains (Arizona-New Mexico-Texas regions). This study highlights the interaction between dust and the NAM system and motivates further investigation of possible dust feedback on monsoon precipitation under climate change and the mega-drought conditions projected for the future.

DOI: 10.5194/acp-12-3717-2012
Citation:
Zhao, C, X Liu, and LR Leung.  2012.  "Impact of the Desert Dust on the Summer Monsoon System over Southwestern North America."  Atmospheric Chemistry and Physics 3717-3731.  https://doi.org/10.5194/acp-12-3717-2012.