Biological and Environmental Research - Earth and Environmental System Sciences
Earth and Environmental System Modeling

Influences of North Pacific Ocean domain extent on the western US winter hydroclimatology in variable-resolution CESM

TitleInfluences of North Pacific Ocean domain extent on the western US winter hydroclimatology in variable-resolution CESM
Publication TypeJournal Article
Year of Publication2020
JournalJournal of Geophysical Research: Atmospheres
Abstract / Summary

Variable-resolution global climate models (VRGCMs) are a dynamical downscaling method that can reach spatiotemporal scales needed for regional climate assessments. Over the years, several users of VRGCMs have assumed where the location and extent of the refinement domain should be based on knowledge of the prevailing storm tracks and resolution dependence of important regional climate processes (e.g., atmospheric rivers [ARs] and orographic uplift), but the effect of high-resolution domain size and extent on the simulation of downstream hydroclimatic phenomena has not been systematically evaluated. Here, we use variable-resolution in the Community Earth System Model (VR-CESM) to perform such a test. To do this, three VR-CESM grids were generated that span the entire, two-thirds, and one-third of the North Pacific and evaluated for a 30-year climatology using Atmospheric Model Intercomparison Project protocols. Simulations are compared with reanalysis products offshore (ERA5) and onshore (Livneh, 2015 and Parameter-elevation Regressions on Independent Slopes Model [PRISM]) of the western US. The westward expansion of refinement domain influenced integrated vapor transport (IVT), which was generally high-biased, but minimally impacted AR characteristics. Due to slight differences in landfalling AR counts in the western US, California winter precipitation generally improved with westward expansion of the refinement domain. Western US mountain snowpack and surface temperatures were insensitive to refinement domain size and were more influenced by changes in topographic resolution and/or land-surface model version. Given minimal dependence of simulated western US hydroclimate on refinement domain size over the North Pacific we advise future VR-CESM studies to focus grid resolution on better resolving land-surface heterogeneity.

URLhttp://dx.doi.org/10.1029/2019jd031977
DOI10.1029/2019jd031977
Journal: Journal of Geophysical Research: Atmospheres
Year of Publication: 2020
Publication Date: 06/2020

Variable-resolution global climate models (VRGCMs) are a dynamical downscaling method that can reach spatiotemporal scales needed for regional climate assessments. Over the years, several users of VRGCMs have assumed where the location and extent of the refinement domain should be based on knowledge of the prevailing storm tracks and resolution dependence of important regional climate processes (e.g., atmospheric rivers [ARs] and orographic uplift), but the effect of high-resolution domain size and extent on the simulation of downstream hydroclimatic phenomena has not been systematically evaluated. Here, we use variable-resolution in the Community Earth System Model (VR-CESM) to perform such a test. To do this, three VR-CESM grids were generated that span the entire, two-thirds, and one-third of the North Pacific and evaluated for a 30-year climatology using Atmospheric Model Intercomparison Project protocols. Simulations are compared with reanalysis products offshore (ERA5) and onshore (Livneh, 2015 and Parameter-elevation Regressions on Independent Slopes Model [PRISM]) of the western US. The westward expansion of refinement domain influenced integrated vapor transport (IVT), which was generally high-biased, but minimally impacted AR characteristics. Due to slight differences in landfalling AR counts in the western US, California winter precipitation generally improved with westward expansion of the refinement domain. Western US mountain snowpack and surface temperatures were insensitive to refinement domain size and were more influenced by changes in topographic resolution and/or land-surface model version. Given minimal dependence of simulated western US hydroclimate on refinement domain size over the North Pacific we advise future VR-CESM studies to focus grid resolution on better resolving land-surface heterogeneity.

DOI: 10.1029/2019jd031977
Citation:
Rhoades, AM, AD Jones, TA O'Brien, JP O'Brien, PA Ullrich, and CM Zarzycki.  2020.  "Influences of North Pacific Ocean domain extent on the western US winter hydroclimatology in variable-resolution CESM."  Journal of Geophysical Research: Atmospheres.  https://doi.org/10.1029/2019jd031977.