Biological and Environmental Research - Earth and Environmental System Sciences
Earth and Environmental System Modeling

Projected Changes in the Terrestrial and Oceanic Regulators of Climate Variability Across Sub-Saharan Africa

TitleProjected Changes in the Terrestrial and Oceanic Regulators of Climate Variability Across Sub-Saharan Africa
Publication TypeJournal Article
Year of Publication2020
AuthorsNotaro, Michael, Wang Fuyao, Yu Yan, and Mao Jiafu
JournalClimate Dynamics
Abstract / Summary

Future changes in the sign and intensity of ocean-land-atmosphere interactions have been insufficiently studied, despite implications for regional climate change projections, extreme event statistics, and seasonal climate predictability. In response to this deficiency, the present study focuses on projected responses to the enhanced greenhouse effect in: (1) the mean state of the atmosphere and land surface; (2) oceanic and terrestrial drivers of sub-Saharan climate variability; and (3) total seasonal climate predictability of sub-Saharan Africa, a region known for its pronounced land-atmosphere coupling. Analysis focuses on output from 23 Earth System Models in the Coupled Model Intercomparison Project Phase Five for the late 20th and 21st centuries. It is projected that the greatest warming across sub-Saharan Africa will occur over the Sahel, the monsoon season will become more persistent into late summer and autumn, short rains in the Horn of Africa (HOA) will intensify, and leaf area index will increase across the HOA. Stepwise Generalized Equilibrium Feedback Assessment, i.e. a multivariate statistical approach, is applied to the model output over sub-Saharan Africa in order to explore the oceanic and terrestrial drivers of regional climate. The models indicate that the study region’s climate variability is dominated by oceanic drivers, with secondary contributions from soil moisture and very modest impacts from vegetation. Overall, the general model consensus of future projections indicates a concerning diminished seasonal predictability of sub-Saharan African regional climate based on key oceanic and terrestrial predictors and an elevated role of the land surface (associated with soil moisture anomalies) compared to oceanic drivers in regulating regional climate variability.

Journal: Climate Dynamics
Year of Publication: 2020
Publication Date: 05/2020

Future changes in the sign and intensity of ocean-land-atmosphere interactions have been insufficiently studied, despite implications for regional climate change projections, extreme event statistics, and seasonal climate predictability. In response to this deficiency, the present study focuses on projected responses to the enhanced greenhouse effect in: (1) the mean state of the atmosphere and land surface; (2) oceanic and terrestrial drivers of sub-Saharan climate variability; and (3) total seasonal climate predictability of sub-Saharan Africa, a region known for its pronounced land-atmosphere coupling. Analysis focuses on output from 23 Earth System Models in the Coupled Model Intercomparison Project Phase Five for the late 20th and 21st centuries. It is projected that the greatest warming across sub-Saharan Africa will occur over the Sahel, the monsoon season will become more persistent into late summer and autumn, short rains in the Horn of Africa (HOA) will intensify, and leaf area index will increase across the HOA. Stepwise Generalized Equilibrium Feedback Assessment, i.e. a multivariate statistical approach, is applied to the model output over sub-Saharan Africa in order to explore the oceanic and terrestrial drivers of regional climate. The models indicate that the study region’s climate variability is dominated by oceanic drivers, with secondary contributions from soil moisture and very modest impacts from vegetation. Overall, the general model consensus of future projections indicates a concerning diminished seasonal predictability of sub-Saharan African regional climate based on key oceanic and terrestrial predictors and an elevated role of the land surface (associated with soil moisture anomalies) compared to oceanic drivers in regulating regional climate variability.

Citation:
Notaro, M, F Wang, Y Yu, and J Mao.  2020.  "Projected Changes in the Terrestrial and Oceanic Regulators of Climate Variability Across Sub-Saharan Africa."  Climate Dynamics.