Skip to main content
U.S. flag

An official website of the United States government

Publication Date
1 January 2023

Projecting Future Energy Production from Operating Wind Farms in North America. Part II: Statistical Downscaling



Capacity factors (CFs) derived from daily expected power at 22 operating wind farms in different regions of North America are used as predictands to train statistical downscaling algorithms using output from ERA5. The statistical downscaling models are then used to make CF projections for a suite of CMIP6 Earth System Models (ESMs). Downscaling is performed using a hybrid statistical approach that employs synoptic types derived using k-means clustering applied to sea level pressure fields with variance corrections applied as a function of the pressure gradient intensity. ESMs exhibit marked variability in terms of the skill with which the frequency of synoptic types and pressure gradients are reproduced relative to ERA5, and that differential skill is used to infer differential credibility in the associated CF projections. Projections of median annual mean CF [P50(CF)] in each 20-yr period from 1980 to 2099 show evidence of declines at most wind farms except in parts of the southern Great Plains, although the magnitude of the changes is strongly dependent on the ESM. For example, P50(CF) in 2080–99 deviate from those in 1980–99 by from −3.1 to +0.2 percentage points in the Northeast. The largest-magnitude declines in P50(CF) ranging from −3.9 to −2 percentage points are projected for the southern West Coast. CF trends exhibit marked seasonality and are strongly linked to changes in the relative intensity of future synoptic patterns, with much less impact from shifts in the occurrence of synoptic types over time. Internal climate modes continue to play a significant role in inducing interannual variability in wind power production, even under high radiative forcing scenarios. Significance Statement We describe how future climate changes may affect wind resources and wind power generation. Near-term changes in projected wind power electricity generation potential at operating wind farms over North America are small, but by the end of the current century electricity production is projected to decrease in many areas but may increase in parts of the southern Great Plains. The amount of change in projected wind power production is a strong function of the Earth system model that is downscaled and also depends on the continued presence of internally forced climate variability. An additional dependence on the amount of greenhouse gas–induced global warming indicates the transition of the energy sector to low-carbon sources may assist in maintaining the abundant U.S. wind resource.

Coburn, Jacob J, and Sara C. Pryor. 2023. “Projecting Future Energy Production From Operating Wind Farms In North America. Part Ii: Statistical Downscaling”. Journal Of Applied Meteorology And Climatology 62 (1). American Meteorological Society: 81-101. doi:10.1175/jamc-d-22-0047.1.
Funding Program Area(s)