Biological and Environmental Research - Earth and Environmental System Sciences
Earth and Environmental System Modeling

Quantifying Stochastic Uncertainty in Detection Time of Human-Caused Climate Signals

TitleQuantifying Stochastic Uncertainty in Detection Time of Human-Caused Climate Signals
Publication TypeJournal Article
Year of Publication2019
JournalProceedings of the National Academy of Sciences
Volume116
Number40
Pages19821-19827
Abstract / Summary

Large initial condition ensembles of a climate model simulation provide many different realizations of internal variability noise superimposed on an externally forced signal. They have been used to estimate signal emergence time at individual grid points, but are rarely employed to identify global fingerprints of human influence. Here we analyze 50- and 40-member ensembles performed with 2 climate models; each was run with combined human and natural forcings. We apply a pattern-based method to determine signal detection time td in individual ensemble members. Distributions of td are characterized by the median td{m} and range td{r}, computed for tropospheric and stratospheric temperatures over 1979 to 2018. Lower stratospheric cooling—primarily caused by ozone depletion—yields td{m} values between 1994 and 1996, depending on model ensemble, domain (global or hemispheric), and type of noise data. For greenhouse-gas–driven tropospheric warming, larger noise and slower recovery from the 1991 Pinatubo eruption lead to later signal detection (between 1997 and 2003). The stochastic uncertainty td{r} is greater for tropospheric warming (8 to 15 y) than for stratospheric cooling (1 to 3 y). In the ensemble generated by a high climate sensitivity model with low anthropogenic aerosol forcing, simulated tropospheric warming is larger than observed; detection times for tropospheric warming signals in satellite data are within td{r} ranges in 60% of all cases. The corresponding number is 88% for the second ensemble, which was produced by a model with even higher climate sensitivity but with large aerosol-induced cooling. Whether the latter result is physically plausible will require concerted efforts to reduce significant uncertainties in aerosol forcing.

URLhttp://dx.doi.org/10.1073/pnas.1904586116
DOI10.1073/pnas.1904586116
Journal: Proceedings of the National Academy of Sciences
Year of Publication: 2019
Volume: 116
Number: 40
Pages: 19821-19827
Publication Date: 10/2019

Large initial condition ensembles of a climate model simulation provide many different realizations of internal variability noise superimposed on an externally forced signal. They have been used to estimate signal emergence time at individual grid points, but are rarely employed to identify global fingerprints of human influence. Here we analyze 50- and 40-member ensembles performed with 2 climate models; each was run with combined human and natural forcings. We apply a pattern-based method to determine signal detection time td in individual ensemble members. Distributions of td are characterized by the median td{m} and range td{r}, computed for tropospheric and stratospheric temperatures over 1979 to 2018. Lower stratospheric cooling—primarily caused by ozone depletion—yields td{m} values between 1994 and 1996, depending on model ensemble, domain (global or hemispheric), and type of noise data. For greenhouse-gas–driven tropospheric warming, larger noise and slower recovery from the 1991 Pinatubo eruption lead to later signal detection (between 1997 and 2003). The stochastic uncertainty td{r} is greater for tropospheric warming (8 to 15 y) than for stratospheric cooling (1 to 3 y). In the ensemble generated by a high climate sensitivity model with low anthropogenic aerosol forcing, simulated tropospheric warming is larger than observed; detection times for tropospheric warming signals in satellite data are within td{r} ranges in 60% of all cases. The corresponding number is 88% for the second ensemble, which was produced by a model with even higher climate sensitivity but with large aerosol-induced cooling. Whether the latter result is physically plausible will require concerted efforts to reduce significant uncertainties in aerosol forcing.

DOI: 10.1073/pnas.1904586116
Citation:
Santer, B, J Fyfe, S Solomon, J Painter, C Bonfils, G Pallotta, and M Zelinka.  2019.  "Quantifying Stochastic Uncertainty in Detection Time of Human-Caused Climate Signals."  Proceedings of the National Academy of Sciences 116(40): 19821-19827.  https://doi.org/10.1073/pnas.1904586116.