Recent Warming Has Resulted in Smaller Gains in net Carbon Uptake in Northern High Latitudes

TitleRecent Warming Has Resulted in Smaller Gains in net Carbon Uptake in Northern High Latitudes
Publication TypeJournal Article
Year of Publication2019
JournalJournal of Climate
Date Published05/2019
Abstract / Summary

Carbon balance of terrestrial ecosystems in the northern high latitudes (NHL) is sensitive to climate change. It remains uncertain whether current regional carbon uptake capacity can be sustained under future warming. Here the atmospheric CO2 drawdown rate (CDR) between 1974 and 2014, defined as the CO2 decrease in ppm over the number of days in spring or summer, is estimated using atmospheric CO2 observations at Barrow, Alaska. We found that the sensitivity of CDR to inter-annual seasonal air temperature anomalies has trended toward less carbon uptake for a given amount of warming over this period. Changes in interannual temperature sensitivity of CDR suggest that relatively warm springs now result in less of a carbon uptake enhancement. Similarly, relatively warm summers now result in greater carbon release. These results generally agree with the sensitivity of net carbon exchange (NCE) estimated by atmospheric CO2 inversion. When NCE was aggregated over North America (NA) and Eurasia (EA), separately, the temperature sensitivity of NCE in NA has changed more than in EA. In order to explore potential mechanisms of this signal, we also examine trends in interannual variability of other climate variables (soil temperature and precipitation), satellite-derived GPP, and TRENDY model ensemble results. Our analysis suggests that the weakened spring sensitivity of CDR may be related with the slowdown in seasonal soil thawing rate, while the summer sensitivity change may be caused by the temporally coincident decrease in temperature sensitivity of photosynthesis. This study suggests that the current NHL carbon sink may become unsustainable as temperatures warm further. We also found that current carbon cycle models do not represent the decrease in temperature sensitivity of net carbon flux. We argue that current carbon-climate models misrepresent important aspect of the carbon-climate feedback and bias the estimation of warming influence on NHL carbon balance.

URLhttp://dx.doi.org/10.1175/jcli-d-18-0653.1
DOI10.1175/jcli-d-18-0653.1
Journal: Journal of Climate
Year of Publication: 2019
Date Published: 05/2019

Carbon balance of terrestrial ecosystems in the northern high latitudes (NHL) is sensitive to climate change. It remains uncertain whether current regional carbon uptake capacity can be sustained under future warming. Here the atmospheric CO2 drawdown rate (CDR) between 1974 and 2014, defined as the CO2 decrease in ppm over the number of days in spring or summer, is estimated using atmospheric CO2 observations at Barrow, Alaska. We found that the sensitivity of CDR to inter-annual seasonal air temperature anomalies has trended toward less carbon uptake for a given amount of warming over this period. Changes in interannual temperature sensitivity of CDR suggest that relatively warm springs now result in less of a carbon uptake enhancement. Similarly, relatively warm summers now result in greater carbon release. These results generally agree with the sensitivity of net carbon exchange (NCE) estimated by atmospheric CO2 inversion. When NCE was aggregated over North America (NA) and Eurasia (EA), separately, the temperature sensitivity of NCE in NA has changed more than in EA. In order to explore potential mechanisms of this signal, we also examine trends in interannual variability of other climate variables (soil temperature and precipitation), satellite-derived GPP, and TRENDY model ensemble results. Our analysis suggests that the weakened spring sensitivity of CDR may be related with the slowdown in seasonal soil thawing rate, while the summer sensitivity change may be caused by the temporally coincident decrease in temperature sensitivity of photosynthesis. This study suggests that the current NHL carbon sink may become unsustainable as temperatures warm further. We also found that current carbon cycle models do not represent the decrease in temperature sensitivity of net carbon flux. We argue that current carbon-climate models misrepresent important aspect of the carbon-climate feedback and bias the estimation of warming influence on NHL carbon balance.

DOI: 10.1175/jcli-d-18-0653.1
Citation:
Zhu, P, Q Zhuang, L Welp, P Ciais, M Heimann, B Peng, W Li, C Bernacchi, C Roedenbeck, and T Keenan.  2019.  "Recent Warming Has Resulted in Smaller Gains in net Carbon Uptake in Northern High Latitudes."  Journal of Climate.  https://doi.org/10.1175/jcli-d-18-0653.1.