Synthetic Ozone Deposition and Stomatal Uptake at Flux Tower Sites

TitleSynthetic Ozone Deposition and Stomatal Uptake at Flux Tower Sites
Publication TypeJournal Article
Year of Publication2018
JournalBiogeosciences
Volume15
Number17
Pages5395-5413
Date Published09/2018
Abstract / Summary

We develop and evaluate a method to estimate O3 deposition and stomatal O3 uptake across networks of eddy covariance flux tower sites where O3 concentrations and O3 fluxes have not been measured. The method combines standard micrometeorological flux measurements, which constrain O3 deposition velocity and stomatal conductance, with a gridded dataset of observed surface O3 concentrations. Measurement errors are propagated through all calculations to quantify O3 flux uncertainties. We evaluate the method at three sites with O3 flux measurements: Harvard Forest, Blodgett Forest, and Hyytiälä Forest. The method reproduces 83% or more of the variability in daily stomatal uptake at these sites with modest mean bias (21% or less). At least 95% of daily average values agree with measurements within a factor of 2 and, according to the error analysis, the residual differences from measured O3 fluxes are consistent with the uncertainty in the underlying measurements.

The product, called synthetic O3 flux or SynFlux, includes 43 FLUXNET sites in the United States and 60 sites in Europe, totaling 926 site years of data. This dataset, which is now public, dramatically expands the number and types of sites where O3 fluxes can be used for ecosystem impact studies and evaluation of air quality and climate models. Across these sites, the mean stomatal conductance and O3 deposition velocity is 0.03–1.0cms−1. The stomatal O3 flux during the growing season (typically April–September) is 0.5–11.0nmol O3m−2s−1 with a mean of 4.5nmol O3m−2s−1 and the largest fluxes generally occur where stomatal conductance is high, rather than where O3 concentrations are high. The conductance differences across sites can be explained by atmospheric humidity, soil moisture, vegetation type, irrigation, and land management. These stomatal fluxes suggest that ambient O3 degrades biomass production and CO2 sequestration by 20%–24% at crop sites, 6%–29% at deciduous broadleaf forests, and 4%–20% at evergreen needleleaf forests in the United States and Europe.

URLhttp://dx.doi.org/10.5194/bg-15-5395-2018
DOI10.5194/bg-15-5395-2018
Journal: Biogeosciences
Year of Publication: 2018
Volume: 15
Number: 17
Pages: 5395-5413
Date Published: 09/2018

We develop and evaluate a method to estimate O3 deposition and stomatal O3 uptake across networks of eddy covariance flux tower sites where O3 concentrations and O3 fluxes have not been measured. The method combines standard micrometeorological flux measurements, which constrain O3 deposition velocity and stomatal conductance, with a gridded dataset of observed surface O3 concentrations. Measurement errors are propagated through all calculations to quantify O3 flux uncertainties. We evaluate the method at three sites with O3 flux measurements: Harvard Forest, Blodgett Forest, and Hyytiälä Forest. The method reproduces 83% or more of the variability in daily stomatal uptake at these sites with modest mean bias (21% or less). At least 95% of daily average values agree with measurements within a factor of 2 and, according to the error analysis, the residual differences from measured O3 fluxes are consistent with the uncertainty in the underlying measurements.

The product, called synthetic O3 flux or SynFlux, includes 43 FLUXNET sites in the United States and 60 sites in Europe, totaling 926 site years of data. This dataset, which is now public, dramatically expands the number and types of sites where O3 fluxes can be used for ecosystem impact studies and evaluation of air quality and climate models. Across these sites, the mean stomatal conductance and O3 deposition velocity is 0.03–1.0cms−1. The stomatal O3 flux during the growing season (typically April–September) is 0.5–11.0nmol O3m−2s−1 with a mean of 4.5nmol O3m−2s−1 and the largest fluxes generally occur where stomatal conductance is high, rather than where O3 concentrations are high. The conductance differences across sites can be explained by atmospheric humidity, soil moisture, vegetation type, irrigation, and land management. These stomatal fluxes suggest that ambient O3 degrades biomass production and CO2 sequestration by 20%–24% at crop sites, 6%–29% at deciduous broadleaf forests, and 4%–20% at evergreen needleleaf forests in the United States and Europe.

DOI: 10.5194/bg-15-5395-2018
Citation:
Ducker, J, C Holmes, T Keenan, S Fares, A Goldstein, I Mammarella, J Munger, and J Schnell.  2018.  "Synthetic Ozone Deposition and Stomatal Uptake at Flux Tower Sites."  Biogeosciences 15(17): 5395-5413.  https://doi.org/10.5194/bg-15-5395-2018.