Skip to main content
U.S. flag

An official website of the United States government

Publication Date
28 June 2023

A warming-induced reduction in snow fraction amplifies rainfall extremes

Authors

Author

The intensity of extreme precipitation events is projected to increase in a warmer climate, posing a great challenge to water sustainability in natural and built environments. Of particular importance are rainfall (liquid precipitation) extremes owing to their instantaneous triggering of runoff and association with floods, landslides and soil erosion. However, so far, the body of literature on intensification of precipitation extremes has not examined the extremes of precipitation phase separately, namely liquid versus solid precipitation. Here we show that the increase in rainfall extremes in high-elevation regions of the Northern Hemisphere is amplified, averaging 15 percent per degree Celsius of warming—double the rate expected from increases in atmospheric water vapor. We utilize both a climate reanalysis dataset and future model projections to show that the amplified increase is due to a warming-induced shift from snow to rain. Furthermore, we demonstrate that intermodel uncertainty in projections of rainfall extremes can be appreciably explained by changes in snow–rain partitioning (coefficient of determination 0.47). Our findings pinpoint high-altitude regions as ‘hotspots’ that are vulnerable to future risk of extreme-rainfall-related hazards, thereby requiring robust climate adaptation plans to alleviate potential risk. Moreover, our results offer a pathway towards reducing model uncertainty in projections of rainfall extremes. 

Ombadi, Mohammed, Mark D. Risser, Alan M. Rhoades, and Charuleka Varadharajan. 2023. “A Warming-Induced Reduction In Snow Fraction Amplifies Rainfall Extremes”. Nature 619 (7969). Springer Science and Business Media LLC: 305-310. doi:10.1038/s41586-023-06092-7.
Funding Program Area(s)