Regional & Global Model Analysis

The overarching goal of the Regional & Global Model Analysis (RGMA) program area is to enhance predictive and process- and system-level understanding of the modes of variability and change within the earth system by advancing capabilities to design, evaluate, diagnose, and analyze global and regional earth system model (ESM) simulations informed by observations.  

The rapidly increasing complexity of ESMs necessitates a rigorous and comprehensive understanding and evaluation of their skill and behavior. Multifaceted, multisystem approaches are required to probe and understand the various feedbacks within and among individual systems, including the atmosphere, ocean, land surface, and cryosphere. The use of model simulations, in combination with observations, enables a deeper understanding of the earth system and models that emulate it.

The RGMA program area focuses on analyzing regions critical to understanding the dynamics of climate variability and change; evaluating robust methods for higher spatial resolution simulations; and diagnosing and analyzing state-of-the-science coupled climate and ESMs across a wide range of scales. These analyses often take the form of modeling experiments that target various aspects of the climate system, including detection and attribution of changes, analysis of climate response to perturbations, exploration of predictability on subseasonal-to-decadal scales, and analysis of feedbacks within the earth system. Understanding and reducing biases of earth system models, as well as uncertainty characterization, are also important elements of the RGMA program area.

To enhance understanding of processes and feedbacks, and to reduce uncertainties and biases in ESMs, the RGMA program area has six major thrusts, each with unique priorities. These are enabled through a combination of university projects, science focus areas (SFA), and cooperative agreements (CA), as indicated in parentheses:

  • Cloud processes and Feedbacks focuses on improving simulation accuracy through better cloud representations in ESMs and on determining the cloud feedbacks that influence climate sensitivity and change. (PCMDI SFA)
  • Biogeochemical Processes and Feedbacks focuses on identifying and quantifying feedbacks between biogeochemical cycles and the earth system and on quantifying and reducing the uncertainties in ESMs associated with these feedback processes. (RUBISCO SFA)
  • High-Latitude Processes and Feedbacks aims at a better understanding of the processes driving rapid system change at high latitudes and the subsequent effects on the Earth’s environment. (HiLAT SFA)
  • Modes of Variability and Change provides insight on the interplay between internally generated climate variability and externally forced response for improved understanding of near-term decadal predictability and projections in the context of longer-term projections. (PCMDI SFA and CATALYST CA)
  • Extreme Event Drivers, Statistics, and Uncertainties targets actionable understanding of multi-sectoral impacts of extreme weather events, especially droughts, floods, and tropical cyclones, and the physical mechanisms that drive variability and change in extremes. (CASCADE SFA & HyperFACETS CA)
  • Water Cycle focuses on advancing the understanding of multiscale water cycle processes and hydrologic extremes and their response to perturbations in the context of the whole earth system and implications for water availability. (WACCEM SFA & HyperFACETS CA)

Some of the cross-cutting capabilities that are the strength of the RGMA program area include:

  • Development of frameworks using a hierarchy of models, ranging from the most complex, very high-resolution climate models like the Department of Energy’s Energy Exascale Earth System Model (E3SM), non-hydrostatic atmospheric models, variable resolution models, and super parametrized models to less complex system models or idealized configurations of complex models for hypothesis testing and addressing scientific questions. (WACCEM SFA, HiLAT SFA, CASCADE SFA, CATALYST CA, HyperFACETS CA)
  • Holistic uncertainty characterization is enabled by a suite of tools, ranging from cutting-edge computational capabilities to complementary empirical models enabled by the latest statistical techniques. This enables us to understand and evaluate the need for improved observations and models. (CASCADE SFA, HiLAT SFA, CATALYST CA)
  • Diagnosing the complex behavior of model simulations and evaluating the capability of models through systematic comparison with available observations and quantifiable metrics, novel diagnostics, and robust extreme event identification methods are some of the core activities of the RGMA program area. These provide pathways for advancing an understanding of the earth system, improving models, and reducing uncertainties that exist in current ESMs. (RUBISCO SFA, WACCEM SFA, PCMDI SFA, CASCADE SFA, CATALYST CA)

The RGMA program area also actively contributes to and coordinates its activities with the U.S. Global Change Research Program (USGCRP), the U.S. Climate Variability and Predictability Program (US CLIVAR), and Interagency Arctic Research Policy Committee (IARPC).

Solicitations: Funding opportunity announcements are posted on the DOE Office of Science Grants and Contracts Website and at grants.gov. Information about preparing and submitting applications, as well as the DOE Office of Science merit review process, is at the DOE Office of Science Grants and Contracts Web Site.

Data Sharing Policy: Funding for projects by the program area is contingent on adherence to the BER data sharing policy.

 

Current RGMA Science Focus Areas

Current RGMA University Projects

Current RGMA Cooperative Agreements

Recent Content

Recent Highlights

A specialized spatial extreme value analysis was used to characterize trends in the climatology of extreme precipitation over the contiguous United States. The essence of the method was to first estimate the climatology of extreme precipitation based on station data and then use a data-driven...
We demonstrate in offline earth system model calculations that organic surfactants distributed by the global marine food web control all modes of air-sea transfer. Trace gases, momentum, heat and water vapor are all included.
Modern computer models for weather, climate, and earth systems contain numerous modules that simulate the complex workings of distinct physical and dynamical phenomena, such as ocean currents, atmospheric winds, clouds, and river flows. These individual modules are typically developed by separate...
ELM v1 is able to capture the observed west-to-east gradient of productivity and biomass because of the introduction of phosphorus (P) cycle dynamics and soil order-based tree mortality. Our model simulations show that the consideration of P availability leads to a smaller carbon sink associated...
We discovered that variations in the spatial pattern of El Niño’s warming (ENSO diversity) substantially alter the relationship between ENSO and western US precipitation.  In addition, using a physically-based ENSO index that fully captures ENSO diversity – in a single metric and for any climate...
In recent years, China has experienced severe and persistent winter haze linked to air stagnation and burning wood or coal. A study led by scientists at the U.S. Department of Energy’s Pacific Northwest National Laboratory revealed the influence of Arctic and midlatitude black carbon (BC)—or soot...
Soot, an important light-absorbing component of smoke, is a product of incomplete fossil fuel and wood combustion. Soot particles can exert a large warming influence on the Earth by absorbing sunlight in the atmosphere and darkening snow and ice surfaces. A study led by scientists at the U.S....
Natural and human sources of small particles (known as aerosols) are important for understanding the Earth’s radiative energy budget and human health effects. There are, however, substantial uncertainties in processes influencing aerosol formation and spatial distribution. A study led by scientists...
The Atlantic Meridional Overturning Circulation (AMOC) redistributes significant amounts of heat, and is an important component of the climate system. Paleoclimatological studies suggest that collapses of the AMOC may have contributed to rapid climate fluctuations during the Pleistocene. Indeed,...
Here we investigate the impact of tropical Indian Ocean warming on the tropical Pacific response to anthropogenic greenhouse gas (GHG) warming by analyzing results from coupled model pacemaker experiments. We find that warming in the Indian Ocean induces local negative sea level pressure (SLP)...

Recent Publications

The gridding of daily accumulated precipitation–especially extremes–from ground-based station observations is problematic due to the fractal nature of precipitation, and therefore estimates of long period return values and their changes based on such gridded daily data sets are generally...
Tropical forests play a crucial role in the global carbon cycle, accounting for one-third of the global NPP and containing about 25% of global vegetation biomass and soil carbon. This is particularly true for tropical forests in the Amazon region, as these comprise approximately 50% of the world’s...
Until recently, the El Niño–Southern Oscillation (ENSO) was considered a reliable source of winter precipitation predictability in the western US, with a historically strong link between extreme El Niño events and extremely wet seasons. However, the 2015–2016 El Niño challenged our understanding of...
Black carbon (BC) has previously been found to intensify haze in China by stabilizing the planetary boundary layer. With ocean, sea ice, and cloud feedbacks included in a global aerosol‐climate model, we show that BC emitted from the North China Plain can be transported to the oceans, which in turn...
Black carbon (BC) particles exert a potentially large warming influence on the Earth system. Reductions in BC emissions have attracted attention as a possible means to moderate near-term temperature changes. For the first time, we evaluate regional climate responses, nonlinearity, and short-term...
Anthropogenic sulfur compounds play an important role in acid deposition, aerosol particle formation, and subsequent radiative forcing and human fine particulate exposure. There are substantial uncertainties in processes influencing sulfate and precursor distributions, however, that have not yet...
A greater warming trend of sea surface temperature in the tropical Indian Ocean than in the tropical Pacific is a robust feature found in various observational data sets. Yet this interbasin warming contrast is not present in climate models. Here we investigate the impact of tropical Indian Ocean...
Rossby waves can cross the equator and connect the Northern Hemisphere (NH) and Southern Hemisphere (SH), or be blocked in the vicinity of the equator. This work explores the windows and barriers for the cross-equatorial waves (CEWs) by the wave ray ensemble method. The eastern Pacific and Atlantic...
Scientific and societal interest in the relationship between the Atlantic Meridional Overturning Circulation (AMOC) and U.S. East Coast sea level has intensified over the past decade, largely due to (1) projected, and potentially ongoing, enhancement of sea-level rise associated with AMOC weakening...
We have recently argued that marine interfacial surface tension must have a distinctive biogeography because it is mediated by fresh surfactant macromolecules released locally through the food web. Here we begin the process of quantification for associated climate flux implications. A low...